Natural Gas Dehydration Unit

Natural Gas Dehydration Unit

Natural gas (NG) dehydration is closely linked with storage of natural gas. There are two basic reasons why NG storage is important. Firstly, it can reduce dependency on NG supply. With this in mind, national strategic reserves are created. Secondly, NG storage enables the maximum capacity of distribution lines to be exploited. NG is stored in summer periods, when there is lower demand for it, and is withdrawn in the winter periods, when significant amounts of NG are used for heating.

Reserves smooth seasonal peaks and also short-term peaks of NG consumption.Underground Gas Storages (UGS) are the most advantageous option for storing large volumes of gas. Nowadays there are approximately 135 UGSs inside the European Union. Their total maximum technical storage capacity is around 109 ms3. According to the latest update, over 0,7∙109 ms3 of additional storage capacity will come on stream in Europe by 2020. There are three types of UGSs: (1) Aquifers, (2) Depleted oil/gas fields, and (3) Cavern reservoirs (salt or hard rock).

Each of these types possesses distinct physical characteristics. The important parameters describing the appropriateness of UGS use are storage capacity, maximum injection/withdrawal performance, and gas contamination during storage. Generally, the allowable pressure of stored gas inside a UGS is up to 20 MPa. The pressure inside increases as the gas is being injected, and decreases when gas is withdrawn. The output gas pressure depends on further distribution. Distribution sites from UGS normally begin at 7 MPa. The temperature of the gas usually ranges from 20 - 35°C. The exact temperature varies with the location of the UGS and with the time of year.


A disadvantage of UGSs is that during storage the gas become saturated by water vapors. In the case of depleted oil field UGSs, vapors of higher hydrocarbons also contaminate the stored gas. The directive for gas distribution sets the allowable concentration of water and concentration of higher hydrocarbons. In the US and Canada, the amount of allowable water in the gas is specified in units: pounds of water vapor per million cubic feet (lbs/MMcft).

This amount should be lower than 7 lbs/MMcft, which is equivalent to 0,112 gH2O/mS3. In Europe, the concentration of water and higher hydrocarbons is specified by their dew point temperature (Tdew). Tdew for water is -7°C for NG at 4 MPa, and Tdew for hydrocarbons is 0°C for NG at the operating pressures. This value for water is equivalent to roughly 0,131 gH2O/mS3 of NG at 4 MPa. As was stated above, the distribution specifications depend on the geographic region in which they are applied. For example, in Nigeria water Tdew should be below 4°C for NG at 4 MPa, which means that the NG can contain more than twice as much water vapors as in Europe.

The water content of NG at saturation is dependent on temperature and pressure. With increasing pressure of the gas the water content decreases, and with increasing temperature the water content in the gas increases.


If the temperature of pipeline walls or storage tanks decreases below the Tdew of the water vapors present in the gas, the water starts to condense on those cold surfaces, and the following problems can appear.

NG in combination with liquid water can form methane hydrate. Methane hydrate is a solid in which a large amount of methane is trapped within the crystal structure of water, forming a solid similar to ice. The methane hydrate production from a unit amount of water is higher than the ice formation. The methane hydrates formed by cooling may plug the valves, the fittings or even pipelines.

NG dissolved in condensed water is corrosive, especially when it contains CO2 or H2S.

Condensed water in the pipeline causes slug flow and erosion.

Water vapor increases the volume and decreases the heating value of the gas.

NG with the presence of water vapor cannot be operated on cryogenic plants.

Dehydration methods ABSORPTION

The most widely-used method for industrial dehydration of NG is absorption. Absorption is usually performed using triethyleneglycol sorbent (TEG). Absorption proceeds at low temperatures and the absorbed water is boiled out from TEG during regeneration in a reboiler at high temperatures. Some physical properties of pure TEG are given in the following text.


The third conventional dehydration method employs gas cooling to turn water molecules into the liquid phase and then removes them from the stream. Natural gas liquids and condensed higher hydrocarbons can also be recovered from NG by cooling. The condensation method is therefore usually applied for simultaneous dehydration and recovery of natural gas liquids.

NG can be advantageously cooled using the Joule-Thompson effect (JT effect). The JT effect describes how the temperature of a gas changes with pressure adjustment. For NG, thanks to expansion, the average distance between its molecules increases, leading to an increase in their potential energy (Van der Waals forces).

During expansion, there is no heat exchange with the environment, and no work creation. Therefore, due to the conservation law, the increase in potential energy leads to a decrease in kinetic energy and thus a temperature decrease of NG. However, there is another phenomenon connected with the cooling of wet NG. Attention should be paid to the formation of methane hydrate. Hydrates formed by cooling may plug the flow. This is usually prevented by injecting methanol or monoethylenglycol (MEG) hydrate inhibitors before each cooling. Figure 7 depicts an industrial application of dehydration method utilizing the JT effect and MEG hydrate inhibition.


The principle of this method lies in the use of the Laval Nozzle, in which the potential energy (pressure and temperature) transforms into kinetic energy (velocity) of the gas. The velocity of the gas reaches supersonic values. Thanks to gas acceleration, sufficient temperature drops are obtained. Tdew of water vapor in NG is reached, and nucleation of the droplets proceeds.

At the inlet to the nozzle there are static blades which induce a swirling flow of the gas. The water droplets that form are separated by the centrifugal force on the walls. The centrifugal force in the supersonic part of the nozzle can reach values up to 500 000 g. The thin water film on the walls moves in the direction of flow into the separation channel. The separation channel leads into the heated degas separator. From here, the slip gas is returned back to the main stream and the water condensate is removed.

After separation of the water it is important to recover the pressure of the gas from its kinetic energy. A shock wave is used to achieve this. Generally, shock waves form when the speed of a gas changes by more than the speed of sound. In supersonic nozzles, the shock wave is created by rapid enlargement of the nozzle diameter. This part of the nozzle is called the diffuser.


By far the highest energy demand of the condensation method at low pressures of NG from UGS is due to the pressure being close to the distribution pressure, so that pressure cannot be used for the JT effect in flashes. Cooling is then compensated by the air pre-cooler and the external cooling device, which are unsuitable for large volumes of processed NG. However, as the pressure difference between UGS and the distribution site increases, the space for expansion rises and the JT effect proceeds with increasing impact. This is projected into a linear decrease in the energy demand of the air pre-cooler and the external cooling device. From the point where there is a pressure of NG > 14 MPa, flash heating is gradually turned on to prevent any freezing caused by the strong JT effect.

The energy demand of flash heating is reflected in the total energy consumption. Finally, for pressures of NG > 16 MPa, total cooling and subsequent condensation is achieved by the JT effect. The total energy demand remains constant, and consists of flash heating and inhibitor injection and regeneration.

In case of the adsorption and absorption dehydration method, the similar falling course of the energy demand with increasing pressure of NG can be explained by the fact that with increasing pressure within a UDG the amount of water present in the NG decreases. The absorption method generally consumes less energy, because the regeneration of TEG is less demanding than adsorbent regeneration. The composition of the total energy demand of the adsorption method can be divided into three parts.

The heat for water desorption is approximately 55%, for warming the adsorbent it is 31%, and for warming the column it is 14%. It also has to be assumed that just part of the heat in the regeneration gas transfers to the adsorbent, the column and heat loss leaves to the atmosphere, and the balance leaves with the hot gas.

Contact Details

Email :
Phone : (+91) 2030403073
(+91) 8956714689
Fax : (+91) 020 67228673

Corporate Address
C-411, Mega Center, Solapur Road, Hadapsar, Pune- 411028, INDIA